Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/1312
DC FieldValueLanguage
dc.contributor.authorLačnjevac, Urošen_US
dc.contributor.authorVasilić, Rastkoen_US
dc.contributor.authorDobrota, Anaen_US
dc.contributor.authorĐurđić, Slađanaen_US
dc.contributor.authorTomanec, Ondřejen_US
dc.contributor.authorZbořil, Radeken_US
dc.contributor.authorMohajernia, Shivaen_US
dc.contributor.authorNguyen, Nhat Truongen_US
dc.contributor.authorSkorodumova, Nataliaen_US
dc.contributor.authorManojlović, Draganen_US
dc.contributor.authorElezović, Nevenkaen_US
dc.contributor.authorPašti, Igoren_US
dc.contributor.authorSchmuki, Patriken_US
dc.date.accessioned2022-09-15T16:19:53Z-
dc.date.available2022-09-15T16:19:53Z-
dc.date.issued2020-11-21-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://physrep.ff.bg.ac.rs/handle/123456789/1312-
dc.description.abstractDeveloping ultraefficient electrocatalytic materials for the hydrogen evolution reaction (HER) with low content of expensive platinum group metals (PGMs) via low-energy-input procedures is the key to the successful commercialization of green water electrolysis technologies for sustainable production of high-purity hydrogen. In this study, we report a facile room-temperature synthesis of ultrafine metallic Ir nanoparticles on conductive, proton-intercalated TiO2 nanotube (H-TNT) arrays via galvanic displacement. A series of experiments demonstrate that a controlled transformation of the H-TNT surface microstructure from neat open-top tubes to disordered nanostripe bundles ("nanograss") is highly beneficial for providing an abundance of exposed Ir active sites. Consequently, for nanograss-engineered composites, outstanding HER activity metrics are achieved even at very low Ir(iii) precursor concentrations. An optimum Ir@TNT cathode loaded with 5.7 μgIr cm-2 exhibits an overpotential of -63 mV at -100 mA cm-2 and a mass activity of 34 A mgIr-1 at -80 mV under acidic conditions, along with excellent catalytic durability and structural integrity. Density functional theory (DFT) simulations reveal that the hydrogen-rich TiO2 surface not only stabilizes the deposited Ir and weakens its H binding strength to a moderate intensity, but also actively takes part in the HER mechanism by refreshing the Ir catalytic sites near the Ir|H-TiO2 interface, thus substantially promoting H2 generation. The comprehensive characterization combined with theory provides an in-depth understanding of the electrocatalytic behavior of H-TNT supported PGM nanoparticles and demonstrates their high potential as competitive electrocatalyst systems for the HER. This journal isen_US
dc.relation.ispartofJournal of Materials Chemistry Aen_US
dc.titleHigh-performance hydrogen evolution electrocatalysis using proton-intercalated TiO<inf>2</inf>nanotube arrays as interactive supports for Ir nanoparticlesen_US
dc.typeArticleen_US
dc.identifier.doi10.1039/d0ta07492f-
dc.identifier.scopus2-s2.0-85096105811-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85096105811-
dc.relation.issue43en_US
dc.relation.volume8en_US
dc.relation.firstpage22773en_US
dc.relation.lastpage22790en_US
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2476-7516-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

35
checked on Nov 20, 2024

Page view(s)

47
checked on Nov 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.