Please use this identifier to cite or link to this item:
https://physrep.ff.bg.ac.rs/handle/123456789/197
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Burić, Maja | en |
dc.contributor.author | Madore, John | en |
dc.contributor.author | Grammatikopoulos, Theodoros | en |
dc.contributor.author | Zoupanos, George | en |
dc.date.accessioned | 2022-07-05T16:30:29Z | - |
dc.date.available | 2022-07-05T16:30:29Z | - |
dc.date.issued | 2006-04-01 | en |
dc.identifier.issn | 1029-8479 | en |
dc.identifier.uri | https://physrep.ff.bg.ac.rs/handle/123456789/197 | - |
dc.description.abstract | A gravitational field can be defined in terms of a moving frame, which when made noncommutative yields a preferred basis for a differential calculus. It is conjectured that to a linear perturbation of the commutation relations which define the algebra there corresponds a linear perturbation of the gravitational field. This is shown to be true in the case of a perturbation of Minkowski space-time. © SISSA 2006. | en |
dc.relation.ispartof | Journal of High Energy Physics | en |
dc.subject | Models of Quantum Gravity | en |
dc.subject | Non-Commutative Geometry | en |
dc.title | Gravity and the structure of noncommutative algebras | en |
dc.type | Article | en |
dc.identifier.doi | 10.1088/1126-6708/2006/04/054 | en |
dc.identifier.scopus | 2-s2.0-33646392449 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/33646392449 | en |
dc.relation.issue | 4 | en |
dc.relation.volume | 2006 | en |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0002-4383-633X | - |
Appears in Collections: | Journal Article |
SCOPUSTM
Citations
51
checked on Nov 23, 2024
Page view(s)
15
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.