Please use this identifier to cite or link to this item:
https://physrep.ff.bg.ac.rs/handle/123456789/198
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Burić, Maja | en |
dc.contributor.author | Madore, John | en |
dc.contributor.author | Nenadović, Luka | en |
dc.date.accessioned | 2022-07-05T16:30:29Z | - |
dc.date.available | 2022-07-05T16:30:29Z | - |
dc.date.issued | 2015-09-24 | en |
dc.identifier.issn | 0264-9381 | en |
dc.identifier.uri | https://physrep.ff.bg.ac.rs/handle/123456789/198 | - |
dc.description.abstract | We analyse the Dirac action on the truncated Heisenberg algebra and in particular, the nonminimal couplings to the background gravitational field. By projection to the Heisenberg algebra we obtain a renormalisable model: the noncommutative extension of the Gross-Neveu model. This result indicates that, as on the commutative curved backgrounds, nonminimal couplings with torsion and curvature are necessary (and sufficient) for renormalisability of scalar and spinor theories on the curved noncommutative spaces. | en |
dc.relation.ispartof | Classical and Quantum Gravity | en |
dc.subject | noncommutative geometry | en |
dc.subject | noncommutative gravity | en |
dc.subject | renormalisation | en |
dc.title | Spinors on a curved noncommutative space: Coupling to torsion and the Gross-Neveu model | en |
dc.type | Article | en |
dc.identifier.doi | 10.1088/0264-9381/32/18/185018 | en |
dc.identifier.scopus | 2-s2.0-84940748493 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84940748493 | en |
dc.relation.issue | 18 | en |
dc.relation.volume | 32 | en |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0002-4383-633X | - |
Appears in Collections: | Journal Article |
SCOPUSTM
Citations
3
checked on Nov 20, 2024
Page view(s)
22
checked on Nov 22, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.