Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/208
DC FieldValueLanguage
dc.contributor.authorBurić, Majaen
dc.contributor.authorGrosse, H.en
dc.contributor.authorMadore, J.en
dc.date.accessioned2022-07-05T16:30:31Z-
dc.date.available2022-07-05T16:30:31Z-
dc.date.issued2010-01-01en
dc.identifier.issn1126-6708en
dc.identifier.urihttps://physrep.ff.bg.ac.rs/handle/123456789/208-
dc.description.abstractIt was shown recently that the lagrangian of the Grosse-Wulkenhaar model can be written as lagrangian of the scalar field propagating in a curved noncommutative space. In this interpretation, renormalizability of the model is related to the interaction with the background curvature which introduces explicit coordinate dependence in the action. In this paper we construct the U1 gauge field on the same noncommutative space: since covariant derivatives contain coordinates, the Yang-Mills action is again coordinate dependent. To obtain a two-dimensional model we reduce to a subspace, which results in splitting of the degrees of freedom into a gauge and a scalar. We define the gauge fixing and show the BRST invariance of the quantum action.en
dc.relation.ispartofJournal of High Energy Physicsen
dc.subjectGauge symmetryen
dc.subjectNon-commutative geometryen
dc.subjectRenormalization regularization and renormalonsen
dc.titleGauge fields on noncommutative geometries with curvatureen
dc.typeArticleen
dc.identifier.doi10.1007/JHEP07(2010)010en
dc.identifier.scopus2-s2.0-77955006749en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/77955006749en
dc.relation.issue7en
dc.relation.volume2010en
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-4383-633X-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

10
checked on Nov 19, 2024

Page view(s)

17
checked on Nov 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.