Please use this identifier to cite or link to this item:
https://physrep.ff.bg.ac.rs/handle/123456789/225
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Burić, Maja | en |
dc.contributor.author | Wohlgenannt, Michael | en |
dc.date.accessioned | 2022-07-05T16:30:33Z | - |
dc.date.available | 2022-07-05T16:30:33Z | - |
dc.date.issued | 2010-01-01 | en |
dc.identifier.issn | 1126-6708 | en |
dc.identifier.uri | https://physrep.ff.bg.ac.rs/handle/123456789/225 | - |
dc.description.abstract | We analyze properties of a family of finite-matrix spaces obtained by a truncation of the Heisenberg algebra and we show that it has a three-dimensional, noncommutative and curved geometry. Further, we demonstrate that the Heisenberg algebra can be described as a two-dimensional hyperplane embedded in this space. As a consequence of the given construction we show that the Grosse-Wulkenhaar (renormalizable) action can be interpreted as the action for the scalar field on a curved background space. We discuss the generalization to four dimensions. © 2010 SISSA. | en |
dc.relation.ispartof | Journal of High Energy Physics | en |
dc.subject | Differential and algebraic geometry | en |
dc.subject | Non-commutative geometry | en |
dc.subject | Nonperturbative effects | en |
dc.title | Geometry of the Grosse-Wulkenhaar model | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/JHEP03(2010)053 | en |
dc.identifier.scopus | 2-s2.0-77954949052 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/77954949052 | en |
dc.relation.issue | 3 | en |
dc.relation.volume | 2010 | en |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0002-4383-633X | - |
Appears in Collections: | Journal Article |
SCOPUSTM
Citations
37
checked on Nov 15, 2024
Page view(s)
23
checked on Nov 21, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.