Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/230
DC FieldValueLanguage
dc.contributor.authorBrkić, Bojanaen
dc.contributor.authorBurić, Majaen
dc.contributor.authorLatas, Duškoen
dc.date.accessioned2022-07-05T16:30:33Z-
dc.date.available2022-07-05T16:30:33Z-
dc.date.issued2022-06-06en
dc.identifier.issn0264-9381en
dc.identifier.urihttps://physrep.ff.bg.ac.rs/handle/123456789/230-
dc.description.abstractWe study details of geometry of noncommutative de Sitter space: we determine the Riemann and Ricci curvature tensors, the energy and the Laplacian. We find, in particular, that fuzzy de Sitter space is an Einstein space, R ab = -3ζη ab . The Laplacian, defined in the noncommutative frame formalism, is not Hermitian and gives nonunitary evolution. When symmetrically ordered, it has the usual quadratic form Δ= Π a Π a (when acting on functions in representation space, ψϵH ): we find its eigenstates and discuss its spectrum. This result is a first step in a study of the scalar field Laplacian, Δ= [Π a , [Π a , ]], and its propagator.en
dc.relation.ispartofClassical and Quantum Gravityen
dc.subjectde Sitter cosmologyen
dc.subjectmodels of quantum gravityen
dc.subjectnoncommutative geometryen
dc.titleLaplacian on fuzzy de Sitter spaceen
dc.typeArticleen
dc.identifier.doi10.1088/1361-6382/ac6133en
dc.identifier.scopus2-s2.0-85130855173en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85130855173en
dc.relation.issue11en
dc.relation.volume39en
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-2733-9552-
crisitem.author.orcid0000-0002-4383-633X-
crisitem.author.orcid0000-0003-4600-6494-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 20, 2024

Page view(s)

28
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.