Please use this identifier to cite or link to this item:
https://physrep.ff.bg.ac.rs/handle/123456789/236
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Burić, Maja | en |
dc.contributor.author | Latas, Duško | en |
dc.contributor.author | Nenadović, Luka | en |
dc.date.accessioned | 2022-07-05T16:30:34Z | - |
dc.date.available | 2022-07-05T16:30:34Z | - |
dc.date.issued | 2018-11-01 | en |
dc.identifier.issn | 1434-6044 | en |
dc.identifier.uri | https://physrep.ff.bg.ac.rs/handle/123456789/236 | - |
dc.description.abstract | We discuss properties of fuzzy de Sitter space defined by means of algebra of the de Sitter group SO (1 , 4) in unitary irreducible representations. It was shown before that this fuzzy space has local frames with metrics that reduce, in the commutative limit, to the de Sitter metric. Here we determine spectra of the embedding coordinates for (ρ,s=12) unitary irreducible representations of the principal continuous series of the SO (1 , 4). The result is obtained in the Hilbert space representation, but using representation theory it can be generalized to all representations of the principal continuous series. | en |
dc.relation.ispartof | European Physical Journal C | en |
dc.title | Fuzzy de Sitter space | en |
dc.type | Article | en |
dc.identifier.doi | 10.1140/epjc/s10052-018-6432-6 | en |
dc.identifier.scopus | 2-s2.0-85057133324 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85057133324 | en |
dc.relation.issue | 11 | en |
dc.relation.volume | 78 | en |
item.grantfulltext | none | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
crisitem.author.orcid | 0000-0002-4383-633X | - |
crisitem.author.orcid | 0000-0003-4600-6494 | - |
Appears in Collections: | Journal Article |
SCOPUSTM
Citations
23
checked on Oct 29, 2024
Page view(s)
26
checked on Nov 5, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.