Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/239
DC FieldValueLanguage
dc.contributor.authorAschieri, Paoloen
dc.contributor.authorDimitrijević-Ćirić, Marijaen
dc.contributor.authorSzabo, Richard J.en
dc.date.accessioned2022-07-05T16:49:15Z-
dc.date.available2022-07-05T16:49:15Z-
dc.date.issued2018-02-01en
dc.identifier.issn1126-6708en
dc.identifier.urihttps://physrep.ff.bg.ac.rs/handle/123456789/239-
dc.description.abstractWe systematically develop the metric aspects of nonassociative differential geometry tailored to the parabolic phase space model of constant locally non-geometric closed string vacua, and use it to construct preliminary steps towards a nonassociative theory of gravity on spacetime. We obtain explicit expressions for the torsion, curvature, Ricci tensor and Levi-Civita connection in nonassociative Riemannian geometry on phase space, and write down Einstein field equations. We apply this formalism to construct R-flux corrections to the Ricci tensor on spacetime, and comment on the potential implications of these structures in non-geometric string theory and double field theory.en
dc.relation.ispartofJournal of High Energy Physicsen
dc.subjectFlux compactificationsen
dc.subjectModels of Quantum Gravityen
dc.subjectNon-Commutative Geometryen
dc.titleNonassociative differential geometry and gravity with non-geometric fluxesen
dc.typeArticleen
dc.identifier.doi10.1007/JHEP02(2018)036en
dc.identifier.scopus2-s2.0-85041701273en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85041701273en
dc.relation.issue2en
dc.relation.volume2018en
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-7738-7141-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

16
checked on Dec 2, 2024

Page view(s)

22
checked on Dec 7, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.