Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/242
DC FieldValueLanguage
dc.contributor.authorDimitrijević-Ćirić, Marijaen
dc.contributor.authorRadovanović, Vojaen
dc.contributor.authorAtefančić, Hrvojeen
dc.date.accessioned2022-07-05T16:49:15Z-
dc.date.available2022-07-05T16:49:15Z-
dc.date.issued2012-11-27en
dc.identifier.issn1550-7998en
dc.identifier.urihttps://physrep.ff.bg.ac.rs/handle/123456789/242-
dc.description.abstractWe consider noncommutative gravity on a space with canonical noncommutativity that is based on the commutative MacDowell-Mansouri action. Gravity is treated as gauge theory of the noncommutative SO(1,3) group, and the Seiberg-Witten map is used to express noncommutative fields in terms of the corresponding commutative fields. In the commutative limit the noncommutative action reduces to the Einstein-Hilbert action plus the cosmological term and the topological Gauss-Bonnet term. After the Seiberg-Witten expansion in the noncommutative parameter the first order correction to the action, as expected, vanishes. We calculate the second order correction and write it in a manifestly gauge covariant way. © 2012 American Physical Society.en
dc.relation.ispartofPhysical Review D - Particles, Fields, Gravitation and Cosmologyen
dc.titleAdS-inspired noncommutative gravity on the Moyal planeen
dc.typeArticleen
dc.identifier.doi10.1103/PhysRevD.86.105041en
dc.identifier.scopus2-s2.0-84870206193en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84870206193en
dc.relation.issue10en
dc.relation.volume86en
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0001-7738-7141-
crisitem.author.orcid0000-0003-0675-1836-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

23
checked on Nov 21, 2024

Page view(s)

32
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.