Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/248
DC FieldValueLanguage
dc.contributor.authorDimitrijević-Ćirić, Marijaen
dc.contributor.authorKonjik, Nikolaen
dc.contributor.authorKurkov, Maxim A.en
dc.contributor.authorLizzi, Fedeleen
dc.contributor.authorVitale, Patriziaen
dc.date.accessioned2022-07-05T16:49:16Z-
dc.date.available2022-07-05T16:49:16Z-
dc.date.issued2018-10-15en
dc.identifier.issn2470-0010en
dc.identifier.urihttps://physrep.ff.bg.ac.rs/handle/123456789/248-
dc.description.abstractWe consider a noncommutative field theory in three space-time dimensions, with space-time star commutators reproducing a solvable Lie algebra. The -product can be derived from a twist operator and it is shown to be invariant under twisted Poincaré transformations. In momentum space the noncommutativity manifests itself as a noncommutative -deformed sum for the momenta, which allows for an equivalent definition of the -product in terms of twisted convolution of plane waves. As an application, we analyze the λφ4 field theory at one loop and discuss its UV/IR behavior. We also analyze the kinematics of particle decay for two different situations: the first one corresponds to a splitting of space-time where only space is deformed, whereas the second one entails a nontrivial -multiplication for the time variable, while one of the three spatial coordinates stays commutative.en
dc.relation.ispartofPhysical Review Den
dc.titleNoncommutative field theory from angular twisten
dc.typeArticleen
dc.identifier.doi10.1103/PhysRevD.98.085011en
dc.identifier.scopus2-s2.0-85056161155en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85056161155en
dc.relation.issue8en
dc.relation.volume98en
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-7738-7141-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

29
checked on Dec 16, 2024

Page view(s)

25
checked on Dec 21, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.