Please use this identifier to cite or link to this item:
https://physrep.ff.bg.ac.rs/handle/123456789/253
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aschieri, Paolo | en_US |
dc.contributor.author | Castellani, Leonardo | en_US |
dc.contributor.author | Dimitrijević-Ćirić, Marija | en_US |
dc.date.accessioned | 2022-07-05T16:50:52Z | - |
dc.date.available | 2022-07-05T16:50:52Z | - |
dc.date.issued | 2008-07-01 | - |
dc.identifier.issn | 0377-9017 | - |
dc.identifier.uri | https://physrep.ff.bg.ac.rs/handle/123456789/253 | - |
dc.description.abstract | A *-product is defined via a set of commuting vector fields X a = eaμ(x)∂μ, and used in a φ*4 theory coupled to the eaμ(x) fields. The *-product is dynamical, and the vacuum solution φ = 0, eaμ= δa μ reproduces the usual Moyal product. The action is invariant under rigid translations and Lorentz rotations, and the conserved energy-momentum and angular momentum tensors are explicitly derived. © 2008 Springer. | en_US |
dc.relation.ispartof | Letters in Mathematical Physics | en_US |
dc.subject | Deformed field theories | en_US |
dc.subject | Dynamical noncommutativity | en_US |
dc.subject | Noether theorem | en_US |
dc.subject | Quantum geometry | en_US |
dc.subject | Twisted star products | en_US |
dc.title | Dynamical noncommutativity and noether theorem in twisted φ<sup>*4</sup> theory | en_US |
dc.type | Journal Article | en_US |
dc.identifier.doi | 10.1007/s11005-008-0247-6 | - |
dc.identifier.scopus | 2-s2.0-47949131990 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/47949131990 | - |
dc.relation.issue | 1 | en_US |
dc.relation.volume | 85 | en_US |
dc.relation.firstpage | 39 | en_US |
dc.relation.lastpage | 53 | en_US |
item.openairetype | Journal Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0001-7738-7141 | - |
Appears in Collections: | Journal Article |
SCOPUSTM
Citations
24
checked on Nov 20, 2024
Page view(s)
22
checked on Nov 22, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.