Please use this identifier to cite or link to this item:
https://physrep.ff.bg.ac.rs/handle/123456789/259
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dimitrijević-Ćirić, Marija | en_US |
dc.contributor.author | Jonke, Larisa | en_US |
dc.contributor.author | Pachoł, Anna | en_US |
dc.date.accessioned | 2022-07-05T17:02:27Z | - |
dc.date.available | 2022-07-05T17:02:27Z | - |
dc.date.issued | 2014-06-14 | - |
dc.identifier.uri | https://physrep.ff.bg.ac.rs/handle/123456789/259 | - |
dc.description.abstract | We review the application of twist deformation formalism and the construction of noncommutative gauge theory on κ-Minkowski space-time. We compare two different types of twists: the Abelian and the Jordanian one. In each case we provide the twisted differential calculus and consider U(1) gauge theory. Different methods of obtaining a gauge invariant action and related problems are thoroughly discussed. | en_US |
dc.relation.ispartof | Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) | en_US |
dc.subject | Hodge dual | en_US |
dc.subject | Twist | en_US |
dc.subject | U(1) gauge theory | en_US |
dc.subject | κ-Minkowski | en_US |
dc.title | Gauge theory on twisted κ-Minkowski: Old problems and possible solutions | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3842/SIGMA.2014.063 | - |
dc.identifier.scopus | 2-s2.0-84903532497 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84903532497 | - |
dc.relation.volume | 10 | en_US |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.orcid | 0000-0001-7738-7141 | - |
Appears in Collections: | Journal Article |
SCOPUSTM
Citations
31
checked on Dec 3, 2024
Page view(s)
31
checked on Dec 6, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.