Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/268
DC FieldValueLanguage
dc.contributor.authorDimitrijević-Ćirić, Marijaen_US
dc.contributor.authorRadovanović, Vojaen_US
dc.date.accessioned2022-07-05T17:09:35Z-
dc.date.available2022-07-05T17:09:35Z-
dc.date.issued2014-01-01-
dc.identifier.issn1547-4771-
dc.identifier.urihttps://physrep.ff.bg.ac.rs/handle/123456789/268-
dc.description.abstractIn this paper the noncommutative gravity is treated as a gauge theory of the non-commutative SO(2, 3)★ group, while the noncommutativity is canonical. The Seiberg-Witten (SW) map is used to express noncommutative fields in terms of the corresponding commutative fields. The commutative limit of the model is the Einstein-Hilbert action plus the cosmological term and the topological Gauss-Bonnet term. We calculate the second order correction to this model and obtain terms that are zeroth, first,.. and fourth power of the curvature tensor. Finally, we discuss physical consequences of those correction terms in the limit of big cosmological constant.en_US
dc.relation.ispartofPhysics of Particles and Nuclei Lettersen_US
dc.subject2nd order expansionen_US
dc.subjectgauge theory of gravityen_US
dc.subjectSeiberg-Witten mapen_US
dc.titleSO(2, 3) noncommutative gravity modelen_US
dc.typeArticleen_US
dc.identifier.doi10.1134/S1547477114070152-
dc.identifier.scopus2-s2.0-84920465027-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84920465027-
dc.relation.issue7en_US
dc.relation.volume11en_US
dc.relation.firstpage920en_US
dc.relation.lastpage923en_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-7738-7141-
crisitem.author.orcid0000-0003-0675-1836-
Appears in Collections:Journal Article
Show simple item record

Page view(s)

29
checked on Dec 5, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.