Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/293
DC FieldValueLanguage
dc.contributor.authorMiladić, Suzanaen
dc.contributor.authorStipsić, Pavleen
dc.contributor.authorDobardŽić, Ediben
dc.contributor.authorMilivojević, Markoen
dc.date.accessioned2022-07-05T17:30:37Z-
dc.date.available2022-07-05T17:30:37Z-
dc.date.issued2020-04-15en
dc.identifier.issn2469-9950en
dc.identifier.urihttps://physrep.ff.bg.ac.rs/handle/123456789/293-
dc.description.abstractIn this paper we investigate the impact of gating potential and magnetic field on phonon induced spin relaxation rate and the speed of the electrically driven single-qubit operations inside the InSb nanowire spin qubit. We show that a strong g factor and high magnetic field strength lead to the prevailing influence of electron-phonon scattering due to deformation potential, considered irrelevant for materials with a weak g factor, like GaAs or Si/SiGe. In this regime we find that spin relaxation between qubit states is significantly suppressed due to the confinement perpendicular to the nanowire axis. We also find that maximization of the number of single-qubit operations that can be performed during the lifetime of the spin qubit requres single quantum dot gating potential.en
dc.relation.ispartofPhysical Review Ben
dc.titleElectrical control of a spin qubit in InSb nanowire quantum dots: Strongly suppressed spin relaxation in high magnetic fielden
dc.typeArticleen
dc.identifier.doi10.1103/PhysRevB.101.155307en
dc.identifier.scopus2-s2.0-85084407959en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85084407959en
dc.relation.issue15en
dc.relation.volume101en
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

8
checked on Nov 19, 2024

Page view(s)

12
checked on Nov 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.