Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/37
DC FieldValueLanguage
dc.contributor.authorVuković, Tatjanaen
dc.contributor.authorDmitrović, Sašaen
dc.date.accessioned2022-06-29T14:54:21Z-
dc.date.available2022-06-29T14:54:21Z-
dc.date.issued2010-11-12en
dc.identifier.issn1751-8113en
dc.identifier.urihttps://physrep.ff.bg.ac.rs/handle/123456789/37-
dc.description.abstractA compact formula for the Fourier transform of a product of Slater-type orbitals on different centres is derived. The integral is reduced to a finite one-dimensional integration over non-oscillatory hypergeometric functions of type 1F2(x; y; z). The formula is valid for all quantum numbers and does not involve the reduced Bessel functions that are usually used to evaluate these integrals. Reduced formulas are calculated for some special directions in the reciprocal space. Also, some useful identities for the Fourier transforms of a product of Slater-type orbitals with correlated sets of parameters are obtained. In order to illustrate simple and efficient use of the presented results, we have applied them to graphene. © 2010 IOP Publishing Ltd.en
dc.relation.ispartofJournal of Physics A: Mathematical and Theoreticalen
dc.titleExtremely compact formulas for the Fourier transform of a product of two-centre Slater-type orbitalsen
dc.typeArticleen
dc.identifier.doi10.1088/1751-8113/43/45/455208en
dc.identifier.scopus2-s2.0-78649667094en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/78649667094en
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0002-2967-2826-
crisitem.author.orcid0000-0002-8124-4095-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

3
checked on Dec 19, 2024

Page view(s)

33
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.