Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/503
DC FieldValueLanguage
dc.contributor.authorLazić, Natašaen
dc.contributor.authorMilivojević, Markoen
dc.contributor.authorDamnjanović, Milanen
dc.date.accessioned2022-07-12T15:48:55Z-
dc.date.available2022-07-12T15:48:55Z-
dc.date.issued2013-11en
dc.identifier.issn0108-7673en
dc.identifier.urihttps://physrep.ff.bg.ac.rs/handle/123456789/503-
dc.description.abstractSpin line groups describe the symmetries of spin arrangements in quasi-one-dimensional systems. These groups are derived for the first family of line groups. Among them, magnetic groups are singled out as a special case. Spin arrangements generated by the derived groups are first discussed for single-orbit systems and then the conclusions are extended to multi-orbit cases. The results are illustrated by the examples of a CuO2 zigzag chain, a (13)C nanotube and the hexaferrite Ba2Mg2Fe12O22. Applications to neutron diffraction and classical ground-state determination are indicated.en
dc.language.isoenen
dc.relation.ispartofActa crystallographica. Section A, Foundations of crystallographyen
dc.subjectline groupsen
dc.subjectquasi-one-dimensional magnetsen
dc.subjectspin groupsen
dc.titleSpin line groupsen
dc.typeJournal Articleen
dc.identifier.doi10.1107/S0108767313022642en
dc.identifier.pmid24132222en
dc.identifier.scopus2-s2.0-84885926239en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84885926239en
dc.relation.issuePt 6en
dc.relation.volume69en
dc.relation.firstpage611-9en
dc.relation.lastpage619en
item.openairetypeJournal Article-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-3634-0301-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 20, 2024

Page view(s)

41
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.