Please use this identifier to cite or link to this item:
https://physrep.ff.bg.ac.rs/handle/123456789/503
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lazić, Nataša | en |
dc.contributor.author | Milivojević, Marko | en |
dc.contributor.author | Damnjanović, Milan | en |
dc.date.accessioned | 2022-07-12T15:48:55Z | - |
dc.date.available | 2022-07-12T15:48:55Z | - |
dc.date.issued | 2013-11 | en |
dc.identifier.issn | 0108-7673 | en |
dc.identifier.uri | https://physrep.ff.bg.ac.rs/handle/123456789/503 | - |
dc.description.abstract | Spin line groups describe the symmetries of spin arrangements in quasi-one-dimensional systems. These groups are derived for the first family of line groups. Among them, magnetic groups are singled out as a special case. Spin arrangements generated by the derived groups are first discussed for single-orbit systems and then the conclusions are extended to multi-orbit cases. The results are illustrated by the examples of a CuO2 zigzag chain, a (13)C nanotube and the hexaferrite Ba2Mg2Fe12O22. Applications to neutron diffraction and classical ground-state determination are indicated. | en |
dc.language.iso | en | en |
dc.relation.ispartof | Acta crystallographica. Section A, Foundations of crystallography | en |
dc.subject | line groups | en |
dc.subject | quasi-one-dimensional magnets | en |
dc.subject | spin groups | en |
dc.title | Spin line groups | en |
dc.type | Journal Article | en |
dc.identifier.doi | 10.1107/S0108767313022642 | en |
dc.identifier.pmid | 24132222 | en |
dc.identifier.scopus | 2-s2.0-84885926239 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84885926239 | en |
dc.relation.issue | Pt 6 | en |
dc.relation.volume | 69 | en |
dc.relation.firstpage | 611-9 | en |
dc.relation.lastpage | 619 | en |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.openairetype | Journal Article | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
crisitem.author.orcid | 0000-0002-3634-0301 | - |
Appears in Collections: | Journal Article |
SCOPUSTM
Citations
5
checked on Oct 28, 2024
Page view(s)
41
checked on Nov 4, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.