Please use this identifier to cite or link to this item:
https://physrep.ff.bg.ac.rs/handle/123456789/540
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Miljković, Vladimir | en |
dc.contributor.author | Živić, I. | en |
dc.contributor.author | Milošević, S. | en |
dc.date.accessioned | 2022-07-12T15:57:15Z | - |
dc.date.available | 2022-07-12T15:57:15Z | - |
dc.date.issued | 2004-07-01 | en |
dc.identifier.issn | 1434-6028 | en |
dc.identifier.uri | https://physrep.ff.bg.ac.rs/handle/123456789/540 | - |
dc.description.abstract | We study the critical behavior of the number of monomer-monomer contacts for two polymers in a good solvent. Polymers are modeled by two self-avoiding walks situated on fractals that belong to the checkerboard (CB) and X family. Each member of a family is labeled by an odd integer b, 3 ≤ b ≤ ∞. By applying the exact Renormalization Group (RG) method, we establish the relevant phase diagrams whereby we calculate the contact critical exponents φ (for the CB and X fractals with 6 = 5 and b = 7). The critical exponent φ is associated with power law of the number of sites at which the two polymers are touching each other. | en |
dc.relation.ispartof | European Physical Journal B | en |
dc.title | On the number of contacts of two polymer chains situated on fractal structures | en |
dc.type | Article | en |
dc.identifier.doi | 10.1140/epjb/e2004-00238-2 | en |
dc.identifier.scopus | 2-s2.0-4544282490 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/4544282490 | en |
dc.relation.issue | 1 | en |
dc.relation.volume | 40 | en |
dc.relation.firstpage | 55 | en |
dc.relation.lastpage | 61 | en |
item.grantfulltext | none | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
Appears in Collections: | Journal Article |
SCOPUSTM
Citations
3
checked on Jan 10, 2025
Page view(s)
14
checked on Jan 16, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.