Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/631
DC FieldValueLanguage
dc.contributor.authorDamnjanović, Milanen
dc.contributor.authorMilošević, Ivankaen
dc.date.accessioned2022-07-12T16:23:43Z-
dc.date.available2022-07-12T16:23:43Z-
dc.date.issued2010-09-01en
dc.identifier.isbn9783642111716en
dc.identifier.issn0075-8450en
dc.identifier.urihttps://physrep.ff.bg.ac.rs/handle/123456789/631-
dc.description.abstractThe irreducible representations of the line groups are the starting point for physical applications. Quite general Wigner's theorem [1] singles out unitary representations as the relevant ones in the quantum mechanical framework. Such representations are decomposable to the irreducible components, which are ingredients sufficient for composition of any unitary representations. Hence, in this chapter, we construct and tabulate irreducible unitary representations only, although line groups, since being not compact, have also the non-unitary representations. The construction starts with the first family groups. Then we use simple (induction) procedure to derive the representations of the families 2-8, containing the halving first family subgroup; finally, we use these representations repeating the same procedure in order to get the representations of the largest families (with the first family subgroup of index four). At the end, we make an overview of their properties and physical implications. © 2010 Springer-Verlag Berlin Heidelberg.en
dc.relation.ispartofLecture Notes in Physicsen
dc.titleIrreducible representationsen
dc.typeArticleen
dc.identifier.doi10.1007/978-3-642-11172-3_4en
dc.identifier.scopus2-s2.0-77956017642en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/77956017642en
dc.relation.volume801en
dc.relation.firstpage47en
dc.relation.lastpage64en
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0001-6885-7201-
Appears in Collections:Journal Article
Show simple item record

Page view(s)

17
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.