Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/632
DC FieldValueLanguage
dc.contributor.authorDamnjanović, Milanen
dc.contributor.authorMilošević, Ivankaen
dc.date.accessioned2022-07-12T16:23:43Z-
dc.date.available2022-07-12T16:23:43Z-
dc.date.issued2010-09-01en
dc.identifier.isbn9783642111716en
dc.identifier.issn0075-8450en
dc.identifier.urihttps://physrep.ff.bg.ac.rs/handle/123456789/632-
dc.description.abstractStandard framework of the symmetry application in physics has three main parts. First, the description of the system is formalized within the state spaceState space ; it is a vector space, with the vectors representing states of the system. Actually, a physical problem under consideration determines the state space . For instance, in quantum mechanical studies, S is a Hilbert space of the wave functions of the system, while in the vibrational analyses it is the space of the all possible atomic displacements. The second part is symmetry group L and its representation D(L) in the state space; i.e., the set of the operators D(ℓ) in S corresponding to the group elements. Finally, the main task is usually to solve the eigenproblem of the hamiltonian H, a hermitian operator in the state space which governs the dynamics. Choice of H depends on the specific problem considered, as well as on the approximations involved in the physical model. Hamiltonian and symmetry commute: D(ℓ)H = HD(ℓ) for each symmetry transformation ℓ. © 2010 Springer-Verlag Berlin Heidelberg.en
dc.relation.ispartofLecture Notes in Physicsen
dc.titleApplicationsen
dc.typeArticleen
dc.identifier.doi10.1007/978-3-642-11172-3_8en
dc.identifier.scopus2-s2.0-77956015189en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/77956015189en
dc.relation.volume801en
dc.relation.firstpage113en
dc.relation.lastpage141en
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0001-6885-7201-
Appears in Collections:Journal Article
Show simple item record

Page view(s)

35
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.