Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/683
DC FieldValueLanguage
dc.contributor.authorDamnjanovic, M.en
dc.contributor.authorMilošević, Ivankaen
dc.date.accessioned2022-07-12T16:26:42Z-
dc.date.available2022-07-12T16:26:42Z-
dc.date.issued1994-01-01en
dc.identifier.issn0305-4470en
dc.identifier.urihttps://physrep.ff.bg.ac.rs/handle/123456789/683-
dc.description.abstractInstead of the usual procedure involving the family of group operators, only the projector of the identity representation is used to obtain the symmetry-adapted basis. For the product groups, this projector is factorized to the subgroups. So, the whole procedure is reduced to the eigenvalue problem for the operators representing the generators. Avoiding summation over the group, the method is suitable for computer implementations even for infinite groups. Some applications are discussed.en
dc.relation.ispartofJournal of Physics A: Mathematical and Generalen
dc.titleModified group-projector technique: Subgroups and generatorsen
dc.typeArticleen
dc.identifier.doi10.1088/0305-4470/27/14/014en
dc.identifier.scopus2-s2.0-33745666322en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/33745666322en
dc.relation.issue14en
dc.relation.volume27en
dc.relation.firstpage4859en
dc.relation.lastpage4866en
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0001-6885-7201-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

9
checked on Nov 21, 2024

Page view(s)

14
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.