Please use this identifier to cite or link to this item:
https://physrep.ff.bg.ac.rs/handle/123456789/689
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Milošević, Ivanka | en |
dc.contributor.author | Damnjanović, Milan | en |
dc.date.accessioned | 2022-07-12T16:26:42Z | - |
dc.date.available | 2022-07-12T16:26:42Z | - |
dc.date.issued | 1993-01-01 | en |
dc.identifier.issn | 0163-1829 | en |
dc.identifier.uri | https://physrep.ff.bg.ac.rs/handle/123456789/689 | - |
dc.description.abstract | Normal vibrational modes of all possible quasi-one-dimensional systems and polymers are classified according to the line-group symmetry. The results are used to discuss the vibronic instabilities for such systems and to establish the Jahn-Teller theorem. A general, but simple method, involving only one monomer, is developed to construct the normal displacements for the concrete polymers. As an illustration, it is verified that the symmetry arguments confirm the Jahn-Teller effect in trans-polyacetylene, resulting in dimerization with alternating bond lengths. © 1993 The American Physical Society. | en |
dc.relation.ispartof | Physical Review B | en |
dc.title | Normal vibrations and Jahn-Teller effect for polymers and quasi-one-dimensional systems | en |
dc.type | Article | en |
dc.identifier.doi | 10.1103/PhysRevB.47.7805 | en |
dc.identifier.scopus | 2-s2.0-0001511384 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/0001511384 | en |
dc.relation.issue | 13 | en |
dc.relation.volume | 47 | en |
dc.relation.firstpage | 7805 | en |
dc.relation.lastpage | 7818 | en |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
crisitem.author.orcid | 0000-0001-6885-7201 | - |
Appears in Collections: | Journal Article |
SCOPUSTM
Citations
57
checked on Nov 20, 2024
Page view(s)
17
checked on Nov 21, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.