Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/961
DC FieldValueLanguage
dc.contributor.authorSpasojević, Djordjeen
dc.contributor.authorJanićević, Sanjaen
dc.contributor.authorKnežević, Milanen
dc.date.accessioned2022-07-12T17:56:41Z-
dc.date.available2022-07-12T17:56:41Z-
dc.date.issued2006-12-01en
dc.identifier.issn0295-5075en
dc.identifier.urihttps://physrep.ff.bg.ac.rs/handle/123456789/961-
dc.description.abstractWe present an analysis of the dynamical critical behavior of the mean-field zero-temperature random-field Ising model, based on the probability of finding a given sequence in the response signal, which has the form of a Markov chain with Poisson transition probabilities. We provide an exact description of the avalanche duration distribution, the absolute probabilities of signal values, and the signal time-autocorrelation function. The overall behavior of these quantities depends on their characteristic lengths, which all diverge near the critical point (z = 1) as ∼ 1/| ln(z)|, where z is a control parameter of the underlying dynamics. Our findings are corroborated with the results of extensive simulations. © EDP Sciences.en
dc.relation.ispartofEurophysics Lettersen
dc.titleExact results for mean-field zero-temperature random-field Ising modelen
dc.typeArticleen
dc.identifier.doi10.1209/epl/i2006-10361-8en
dc.identifier.scopus2-s2.0-33845302035en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/33845302035en
dc.relation.issue5en
dc.relation.volume76en
dc.relation.firstpage912en
dc.relation.lastpage918en
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0003-2177-530X-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

22
checked on Oct 29, 2024

Page view(s)

22
checked on Nov 4, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.