Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/963
DC FieldValueLanguage
dc.contributor.authorKnežević, Milanen
dc.contributor.authorKnežević, Dragicaen
dc.contributor.authorSpasojević, Đorđeen
dc.date.accessioned2022-07-12T17:56:41Z-
dc.date.available2022-07-12T17:56:41Z-
dc.date.issued2004-01-09en
dc.identifier.issn0305-4470en
dc.identifier.urihttps://physrep.ff.bg.ac.rs/handle/123456789/963-
dc.description.abstractWe study the statistics of equally weighted random walk paths on a family of Sierpinski gasket lattices whose members are labelled by an integer b (2 ≤ b < ∞). The obtained exact results on the first eight members of this family reveal that, for every b > 2, mean path end-to-end distance grows more slowly than any power of its length N. We provide arguments for the emergence of usual power law critical behaviour in the limit b → ∞ when fractal lattices become almost compact.en
dc.relation.ispartofJournal of Physics A: Mathematical and Generalen
dc.titleStatistics of equally weighted random paths on a class of self-similar structuresen
dc.typeArticleen
dc.identifier.doi10.1088/0305-4470/37/1/001en
dc.identifier.scopus2-s2.0-0346671356en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/0346671356en
dc.relation.issue1en
dc.relation.volume37en
dc.relation.firstpage1en
dc.relation.lastpage8en
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2177-530X-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 20, 2024

Page view(s)

16
checked on Nov 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.