Please use this identifier to cite or link to this item:
https://physrep.ff.bg.ac.rs/handle/123456789/1254
Title: | Numerical simulation of "an American haboob" | Authors: | Vukovic, A. Vujadinovic, M. Pejanovic, G. Andric, J. Kumjian, M. R. Đurđević, Vladimir Dacic, M. Prasad, A. K. El-Askary, H. M. Paris, B. C. Petkovic, S. Nickovic, S. Sprigg, W. A. |
Issue Date: | 2-Apr-2014 | Journal: | Atmospheric Chemistry and Physics | Abstract: | A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land-atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High-resolution numerical models are required for accurate simulation of the small scales of the haboob process, with high velocity surface winds produced by strong convection and severe downbursts. Dust productive areas in this region consist mainly of agricultural fields, with soil surfaces disturbed by plowing and tracks of land in the high Sonoran Desert laid barren by ongoing draught. Model simulation of the 5 July 2011 dust storm uses the coupled atmospheric-dust model NMME-DREAM (Non-hydrostatic Mesoscale Model on E grid, Janjic et al., 2001; Dust REgional Atmospheric Model, Nickovic et al., 2001; Pérez et al., 2006) with 4 km horizontal resolution. A mask of the potentially dust productive regions is obtained from the land cover and the normalized difference vegetation index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The scope of this paper is validation of the dust model performance, and not use of the model as a tool to investigate mechanisms related to the storm. Results demonstrate the potential technical capacity and availability of the relevant data to build an operational system for dust storm forecasting as a part of a warning system. Model results are compared with radar and other satellite-based images and surface meteorological and PM10 observations. The atmospheric model successfully hindcasted the position of the front in space and time, with about 1 h late arrival in Phoenix. The dust model predicted the rapid uptake of dust and high values of dust concentration in the ensuing storm. South of Phoenix, over the closest source regions (~25 km), the model PM10 surface dust concentration reached ~2500 μg mg-3, but underestimated the values measured by the PM10 stations within the city. Model results are also validated by the MODIS aerosol optical depth (AOD), employing deep blue (DB) algorithms for aerosol loadings. Model validation included Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), equipped with the lidar instrument, to disclose the vertical structure of dust aerosols as well as aerosol subtypes. Promising results encourage further research and application of high-resolution modeling and satellite-based remote sensing to warn of approaching severe dust events and reduce risks for safety and health. |
URI: | https://physrep.ff.bg.ac.rs/handle/123456789/1254 | ISSN: | 1680-7316 | DOI: | 10.5194/acp-14-3211-2014 |
Appears in Collections: | Journal Article |
Show full item record
SCOPUSTM
Citations
49
checked on Nov 20, 2024
Page view(s)
8
checked on Nov 26, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.