Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/1322
Title: Facile Synthesis of Low-Cost Copper-Silver and Cobalt-Silver Alloy Nanoparticles on Reduced Graphene Oxide as Efficient Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media
Authors: Milikić, Jadranka
Knežević, Sara
Stojadinović, Stevan 
Alsaiari, Mabkhoot
Harraz, Farid A
Santos, Diogo M F
Šljukić, Biljana
Keywords: CoAg alloy;CuAg alloy;hydrogen peroxide reduction reaction;nanoparticles;oxygen reduction reaction;reduced graphene oxide
Issue Date: 2-Aug-2022
Journal: Nanomaterials (Basel, Switzerland)
Abstract: 
Copper-silver and cobalt-silver alloy nanoparticles deposited on reduced graphene oxide (CuAg/rGO and CoAg/rGO) were synthesized and examined as electrocatalysts for oxygen reduction reaction (ORR) and hydrogen peroxide reduction reaction (HPRR) in alkaline media. Characterization of the prepared samples was done by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction analysis (XRD), and scanning electron microscopy with integrated energy-dispersive X-ray spectroscopy (SEM-EDS). CuAg/rGO and CoAg/rGO nanoparticles diameter ranged from 0.4 to 9.2 nm. The Ag loading was ca. 40 wt.% for both electrocatalysts, with that for Cu and Co being 35 and 17 wt.%, respectively. CoAg/rGO electrocatalyst showed a Tafel slope of 109 mV dec-1, significantly lower than that for CuAg/rGO (184 mV dec-1), suggesting faster ORR kinetics. Additionally, a higher diffusion current density was obtained for CoAg/rGO (-2.63 mA cm-2) than for CuAg/rGO (-1.74 mA cm-2). The average value of the number of electrons transferred during ORR was 2.8 for CuAg/rGO and 3.3 for CoAg/rGO electrocatalyst, further confirming the higher ORR activity of the latter. On the other hand, CuAg/rGO showed higher peak current densities (-3.96 mA cm-2) for HPRR compared to those recorded for CoAg/rGO electrocatalyst (-1.96 mA cm-2).
URI: https://physrep.ff.bg.ac.rs/handle/123456789/1322
ISSN: 2079-4991
DOI: 10.3390/nano12152657
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

8
checked on Jan 15, 2025

Page view(s)

23
checked on Jan 21, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.