Please use this identifier to cite or link to this item:
https://physrep.ff.bg.ac.rs/handle/123456789/16
Title: | Asymptotic form of the spectral dimension of the Sierpinski gasket type of fractals | Authors: | Borjan, Zoran Elezović-Hadžić, Sunčica Knezevic, M. Milošević, Ivanka |
Issue Date: | 1-Dec-1987 | Journal: | Journal of Physics A: General Physics | Abstract: | The authors have studied the spectral dimension d48T of an infinite class of fractals. The first member (b=2) of the class is the two-dimensional Sierpinski gasket, while the last member (b= infinity ) appears to be a wedge of the ordinary triangular lattice. By studying the electric resistance of the fractals they have been able to calculate exact values of d for the first 200 members of the class. An analysis of the obtained data reveals that for large b the spectral dimension should approach the upper limit of 2 according to the formula d approximately=2-constant (ln b)beta, where beta is not larger than one. This result implies, among other things, that the scaling exponents of the resistivity and diffusion constant should logarithmically vanish at the fractal-lattice crossover. |
URI: | https://physrep.ff.bg.ac.rs/handle/123456789/16 | ISSN: | 0305-4470 | DOI: | 10.1088/0305-4470/20/11/008 |
Appears in Collections: | Journal Article |
Show full item record
SCOPUSTM
Citations
16
checked on Nov 20, 2024
Page view(s)
98
checked on Nov 22, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.