Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/241
DC FieldValueLanguage
dc.contributor.authorDimitrijević-Ćirić, Marijaen
dc.contributor.authorRadovanović, Vojaen
dc.contributor.authorWess, Juliusen
dc.date.accessioned2022-07-05T16:49:15Z-
dc.date.available2022-07-05T16:49:15Z-
dc.date.issued2008-04-01en
dc.identifier.issn0015-8208en
dc.identifier.urihttps://physrep.ff.bg.ac.rs/handle/123456789/241-
dc.description.abstractWe discuss a deformation of the Hopf algebra of supersymmetry (SUSY) transformations based on a special choice of a twist. As usual, algebra itself remains unchanged, but the comultiplication changes. This leads to a deformed Leibniz rule for SUSY transformations. Superfields are multiplied by using a *-product which is noncommutative, hermitian and finite when expanded in power series of the deformation parameter. One possible deformation of the Wess-Zumino action is proposed and analysed in detail. Differently from most of the literature concerning this subject, we work in Minkowski space-time. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.en
dc.relation.ispartofFortschritte der Physiken
dc.subjectDeformed Wess-Zumino modelen
dc.subjectNonanticommutative spaceen
dc.subjectSupersymmetryen
dc.subjectTwisten
dc.titleField theory on nonanticommutative superspaceen
dc.typeConference Paperen
dc.identifier.doi10.1002/prop.200710514en
dc.identifier.scopus2-s2.0-55449132516en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/55449132516en
dc.relation.issue4-5en
dc.relation.volume56en
dc.relation.firstpage418en
dc.relation.lastpage423en
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0001-7738-7141-
crisitem.author.orcid0000-0003-0675-1836-
Appears in Collections:Conference paper
Show simple item record

Page view(s)

24
checked on Nov 20, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.