Please use this identifier to cite or link to this item:
https://physrep.ff.bg.ac.rs/handle/123456789/254
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dimitrijević-Ćirić, Marija | en_US |
dc.contributor.author | Jonke, Larisa | en_US |
dc.date.accessioned | 2022-07-05T16:54:09Z | - |
dc.date.available | 2022-07-05T16:54:09Z | - |
dc.date.issued | 2012-01-01 | - |
dc.identifier.issn | 1742-6588 | - |
dc.identifier.uri | https://physrep.ff.bg.ac.rs/handle/123456789/254 | - |
dc.description.abstract | Kappa-Minkowski space-time is an example of noncommutative space-time with potentially interesting phenomenology. However, the construction of field theories on this space is plagued with ambiguities. We propose to resolve certain ambiguities by clarifying the geometrical picture of gauge transformations on the κ-Minkowski space-time in the twist approach. We construct the action for the noncommutative U(1) gauge fields in a geometric way, as an integral of a maximal form. The effective action with the first order corrections in the deformation parameter is obtained using the Seiberg-Witten map to relate noncommutative and commutative degrees of freedom. | en_US |
dc.relation.ispartof | Journal of Physics: Conference Series | en_US |
dc.title | Gauge theory on kappa-Minkowski revisited: The twist approach | en_US |
dc.type | Conference Paper | en_US |
dc.identifier.doi | 10.1088/1742-6596/343/1/012049 | - |
dc.identifier.scopus | 2-s2.0-84858169592 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84858169592 | - |
dc.relation.volume | 343 | en_US |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairetype | Conference Paper | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.orcid | 0000-0001-7738-7141 | - |
Appears in Collections: | Conference paper |
SCOPUSTM
Citations
1
checked on Dec 1, 2024
Page view(s)
26
checked on Dec 4, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.