Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/262
DC FieldValueLanguage
dc.contributor.authorDimitrijević-Ćirić, Marijaen_US
dc.contributor.authorJonke, Larisaen_US
dc.contributor.authorMöller, Lutzen_US
dc.contributor.authorTsouchnika, Efrossinien_US
dc.contributor.authorWess, Juliusen_US
dc.contributor.authorWohlgenannt, Michaelen_US
dc.date.accessioned2022-07-05T17:04:35Z-
dc.date.available2022-07-05T17:04:35Z-
dc.date.issued2004-11-01-
dc.identifier.issn0011-4626-
dc.identifier.urihttps://physrep.ff.bg.ac.rs/handle/123456789/262-
dc.description.abstractA general formalism is developed, that allows the construction of field theory on quantum spaces which are deformations of ordinary spacetime. The symmetry group of spacetime is replaced by a quantum group. This formalism is demonstrated for the κ-deformed Poincaré algebra and its quantum space. The algebraic setting is mapped to the algebra of functions of commuting variables with a suitable *-product. Fields are elements of this function algebra. As an example, the Klein-Gordon equation is defined and derived from an action.en_US
dc.relation.ispartofCzechoslovak Journal of Physicsen_US
dc.subjectDeformationen_US
dc.subjectField theoryen_US
dc.subjectQuantum groupen_US
dc.titleField theory on Kappa-spacetimeen_US
dc.typeConference Paperen_US
dc.identifier.doi10.1007/s10582-004-9785-z-
dc.identifier.scopus2-s2.0-20444377959-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/20444377959-
dc.relation.issue11en_US
dc.relation.volume54en_US
dc.relation.firstpage1243en_US
dc.relation.lastpage1248en_US
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0001-7738-7141-
Appears in Collections:Conference paper
Show simple item record

SCOPUSTM   
Citations

24
checked on Nov 19, 2024

Page view(s)

26
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.