Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/294
Title: Meron ground states of quantum hall droplets
Authors: Milovanović, M. V.
Dobardžić, Edib
Radović, Z.
Issue Date: 10-Sep-2009
Journal: Physical Review B - Condensed Matter and Materials Physics
Abstract: 
We argue that topological meron excitations, which are in a strong coupling phase (bound in pairs) in infinite quantum Hall ferromagnets, become deconfined in finite-size quantum Hall systems. Although effectively for larger systems meron energy grows with the size of the system, when gyromagnetic ratio is small meron becomes the lowest-lying state of a quantum Hall droplet. This comes as a consequence of the many-body correlations built in the meron construction that minimize the interaction energy. We demonstrate this by using mean-field ansatzes for meron wave function. The ansatzes will enable us to consider much larger system sizes than in the previous work, where fractionalization into merons was introduced. © 2009 The American Physical Society.
URI: https://physrep.ff.bg.ac.rs/handle/123456789/294
ISSN: 1098-0121
DOI: 10.1103/PhysRevB.80.125305
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

7
checked on Nov 16, 2024

Page view(s)

19
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.