Please use this identifier to cite or link to this item: https://physrep.ff.bg.ac.rs/handle/123456789/18
Title: Noncommutative field theory from an angular twist
Authors: Dimitrijević-Ćirić, Marija 
Konjik, Nikola 
Samsarov, Andjelo
Issue Date: 1-Jan-2019
Journal: Proceedings of Science
Abstract: 
Black hole (BH) perturbation is followed by a ringdown phase which is dominated by quasinormal modes (QNM). These modes may provide key signature of the gravitational waves. The presence of a deformed spacetime structure may distort this signal. In order to account for such effects, we consider a toy model consisting of a noncommutative charged scalar field propagating in a realistic black hole background. We then analyse the corresponding field dynamics by applying the methods of the Hopf algebra deformation by Drinfeld twist. The latter framework is well suited for incorporating deformed symmetries into a study of this kind. As a result, we obtain the BH QNM spectrum that, besides containing the intrinsic information about a black hole that is being analysed, also carry the information about the underlying structure of spacetime.
URI: https://physrep.ff.bg.ac.rs/handle/123456789/18
Appears in Collections:Conference paper

Show full item record

Page view(s)

36
checked on Nov 13, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.